
Notes on Synchrotron Radiation

Don Edwards

Version of May 18, 2007

Contents

1 Introduction 1

2 Transit to the Lienard-Wiechert Potentials 2
2.1 Equations for the Potentials . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Retarded Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Single Particle Synchrotron Radiation 6
3.1 The Larmor Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Distribution in Energy and Angle . . . . . . . . . . . . . . . . . . . . 7

4 Coherent Synchrotron Radiation 8

1 Introduction

The purpose of these notes is twofold. First, it is an attempt to update the brief
chapter on synchrotron radiation in the book by Mike Syphers and me[1]. Second,
an immediate context for application of this material is the emittance transfer ex-
periment under assembly at Fermilab[2].

When we were putting together the material for the book about twenty years ago,
synchrotron radiation was mostly an irritation in the construction of accelerators for
high energy physics. For electron synchrotrons, the main problem was the provision
of enough RF acceleration to overcome the radiation loss per turn. Even in the case
of proton synchrotrons of sufficiently high energy such as the LHC, radiation from
protons was would be a major contributor to the cryogenic heat load and a vacuum
system design problem.
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Since then interest in synchrotron radiation has grown dramatically as the value
of “light sources” for research and application in virtually every field of science and
technology has been realized. A striking indicator of this circumstance is today’s
transition of such laboratories as DESY and SLAC away from emphasis on HEP
toward fourth generation light sources.

Therefore, it is not enough to comment on the radiation loss per turn and the
critical energy of the photons. So the discussion in the succeeding sections goes
somewhat further, without attempting to substitute for the completeness of, say,
Jackson’s Classical Electrodynamics[3]. But, at a minimum, it is necessary to expand
on single-particle radiation including deviation from a circle as in the edge effect and
to discuss coherent radiation.

The experiment under assembly at Fermilab combines both the attractive and
aggravating aspects of synchrotron radiation. Aggravating in the potential for co-
herent synchrotron radiation to conflict with the phase space interchange goal of the
experiment; attractive in its benefits for beam diagnostics. It is remarkable to me
that these effects have relevance at an electron energy of only 15 MeV. Mention of
these effects in the experiment will appear throughout these notes, with the main
discussion in the concluding sections.

2 Transit to the Lienard-Wiechert Potentials

In our book, Mike and I avoided the use of the vector potential, my recollection
being that I had not seen it as an undergraduate. By now it’s probably introduced
in high school. Besides it would be artificial to attempt to address the subjects of
these notes without the use of the retarded potentials.

2.1 Equations for the Potentials

Since ∇ · ~B = 0 the Helmholtz decomposition theorem of vector analysis[4] says

that we can express the magnetic field in terms of derivatives of another vector, ~A,
according to

~B = ∇× ~A. (1)

Then, using ~A, Faraday’s Law, ∇ ~E = −∂ ~B/∂t, Eq. 1 can be written

∇×

 ~E +
∂ ~A

∂t

 = 0, (2)
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and since the curl vanishes, the rest of the Helmholtz theorem says that the quantity
in parentheses can be written as the gradient of some scalar function, Φ. So now the
electric field may be expressed as

~E = −∇Φ− ∂ ~A

∂t
. (3)

Eqs. 1, 3 are the standard expressions for the fields in terms of the vector and scalar
potentials. The two of Maxwell’s equations that are homogeneous in the fields were
used to obtain them.

In vacuum form, the other two of Maxwell’s equations are

∇ · ~E =
ρ

ε0

(4)

∇× ~B = µ0
~j +

1

c2

∂ ~E

∂t
(5)

where ρ and ~j are the charge and current densities respectively. Take Eqs. 1, 2, insert
them into Eq. 5, and rearrange to give

∇
(
∇ · ~A +

1

c2

∂Φ

∂t

)
−∇2 ~A +

1

c2

∂2 ~A

∂t2
= µ0

~j (6)

where use has been made of the identity ∇ × ∇ × ~A = ∇(∇ × ~A) − ∇2 ~A. The

components of ~A are linked only by the first term on the left. It would be convenient
if somehow it went away. That it could be eliminated was recognized in the latter part
of the 19th century, and that it can be set to zero is called the Lorentz condition.[5].

In Eq. 1 if you replace ~A by ~A +∇ξ where ξ is some scalar function of space and
time then nothing abot ~B changes because the curl of a gradient is zero. Similarly,
the electric field is unchanced by the replacement Φ → Φ − ∂ξ/∂t. The condition
that the parenthetical term in Eq. 6 be an invariant is that ξ satisfy the homogeneous
wave equation. Then with application of the gradient operator, the entire first term
in the equation vanishes. With a related though shorter argument applied to Eq. 4,
the equations for the potentials become

∇2Φ− 1

c2

∂2Φ

∂t2
= − ρ

ε0

(7)

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −µ0

~j (8)

and the components of the potentials are no longer coupled.
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2.2 Retarded Potentials

The four equations represented by Eqs. 7, 8 are all of the same form, so we need
only solve one of them. The main thing to keep in mind during this context is the
finite speed of light. If you are sitting at some point ~r at time t, then the signal from
a field source located at ~r ′ must have been emitted at a time t′ = t − R/c earlier,
where R is the magnitude of the distance between ~r and ~r ′.

This paragraph is based on Born and Wolf[6]. From electrostatics, one might
expect that a trial solution for Φ would be

Φ(~r, t) =
1

4πε0

∫ ρ(~r ′, t−R/c)

R
dV ′ (9)

and put this into Eq. 7 to verify that this works. There is a pole at R = 0, so set
Φ = φ1 +φ2 where φ1 is the integral within a sphere of radius a and φ2 is the integral
from a out to infinity. For φ2, differentiation under the integral sign is permitted
and φ2 is found to satisfy the homogeneous wave equation. For φ1, look at the
limit as a tends to zero. Then ∇2φ1 will approach the electrostatic potential of a
homogeneously charged sphere:

∇2φ1 = − 1

ε0

ρ(~r, t). (10)

Finally, for a sufficiently small

φ̈1 ≈
1

2
a2ρ̈ (11)

and so tends to zero with a. Therefore Φ as represented by Eq. 9 is a solution of
Eq. 7 as are, by extension, the solutions for the vector potential:

~A(~r, t) =
µ0

4π

∫ ~j(~r ′, t−R/c)

R
dV ′. (12)

Eqs. 9 and 12 are the retarded potentials.
To apply the retarded potentials to a moving “point” charge, I switch to the

discussion in Panofsky and Phillips[7], though with changes in notation. Two factors
have to be taken into consideration: the charge may be in motion and its structure
should not appear in the result. Think of a sphere collapsing inward toward the point
of observation located at ~r. If the charge were at rest, the field source collected by
a volume element of surface area dS and thickness dr would be [ρ]dSdr, where [ρ] is
the charge density at the retarded time. But if the charge is moving with velocity ~v,
then if there is a component of ~v directed toward the point of observation, then the
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quantity of charge in this volume element will be reduced by [ρ]dS(~v · ~ndt, where ~n
is the unit vector from the source point to the point of observation. Therefore, the
amount of charge included in this volume element is

de = [ρ]dV ′ − [ρ]~v · ~ndSdt. (13)

Since dt = dr/c. we can solve for the retarded charge density:

[ρ]dV ′ = de
1

1− ~β · ~n
(14)

with ~β = ~v/c. Since in the point charge limit, the region occupied by the charge is
negligible, Eq. 9 yields

Φ =
e

4πε0R

[
1

(1− ~n · ~β)

]
ret

, (15)

and the corresponding expression for the vector potential is

~A =
µ0e

4πR

[
~v

(1− ~n · ~β)

]
ret

. (16)

These are the Lienard-Wiechert potentials. The subscript “ret” means that the
velocity is to be evaluated at the retarded time.

The fields yielded by Eqs. 15 and 16 are

~E =
e

4πε0

 ~n− ~β

γ2(1− ~β · ~n)3R2


ret

+
e

4πε0c

~n× [(~n− ~β)× d~β/dt]

(1− ~β · ~n)3R


ret

(17)

~B =
1

c
~n× ~E (18)

and it is interesting to note that differentiation of the Lienard-Wiechert potentials
to get the fields is not all that easy; here I am just reproducing the result in Jack-
son, with a change to SI units. The first term in Eq. 17 has the 1/R2 dependence
associated with the field of a uniformly moving charge and the 1/R of the second
term is characteristic of the radiation field resulting from acceleration. Both terms
are necessary for discussion of intra-bunch processes; only the second is needed for
the far field effects of the next sections.
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3 Single Particle Synchrotron Radiation

3.1 The Larmor Formula

Suppose the speed of the particle is much less than that of light. Then the far field
term in Eq. 17 is

~E =
e

4πε0cR
[~n× (~n× d~β/dt)]ret (19)

and with Poynting’s vector, ~S = ~E × ~B/µ0, this leads to the power per unit solid
angle

dP

dΩ
= R2|~S| = e2

(4π)2ε0

a2

c3
sin2 θ (20)

where a is the magnitude of the acceleration and θ is the “latitude” in a coordinate
system with θ = 0 in the direction of the acceleration. Integration over the solid
angle dΩ = sin θdθdφ yields the familiar Larmor formula:

P =
1

6πε0

e2a2

c3
(21)

The relativistic extension of Eq. 21 was reproduced in the book by Syphers and me[1]
and need not be detailed here, other than to state that for centripetal acceleration a
factor of γ4 multiplies the Larmor formula. The associated radiation extends up to
an angular frequency characterized by

ωc =
3

2
γ3 c

ρ
(22)

where ρ is the bend radius.
Some of the references that I’m looking at use Gaussian units, others SI. I would

like to switch to expressing equations in a form independent of the set of units. After
inclusion of the factor γ4, divide Eq. 21 by h̄ωc, set a = c2/ρ, make use of Eq. 22,
and multiply by the time of passage through a bend magnet of angle χ, δt = ρχ/c.
The result is

Nc =
(

2

3

)2

αγχ (23)

where α is the fine structure constant. Eq. 23 represents the number of photons if
they were all at the critical energy arising from a single passage through the bend.

At A0, one of the dogleg magnets produces a bend of 22.5 degrees. At 15 MeV,
Nc = 0.037. The critical energy h̄ωc is 0.97× 10−21 J or 6× 10−3 eV. If the radiation
from a 1 nC bunch were incoherent, the radiated energy would be 3× 10−12 J, and
would be difficult to detect. The critical wavelength, λc = 2πc/ωc, is about 125 µm.
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3.2 Distribution in Energy and Angle

Jackson uses the variable I to denote the energy radiated during a single passage
through the region of obsevation and d2I/(dωdΩ) for the energy distribution in fre-
quency and solid angle. Proceeding along the lines of the discussion of the Larmor
formula above, Jackson’s Eq. 14.83 on page 674 of the second edition can be expressed
as

d2I

dh̄ωdΩ
=

3α

4π2

(
ω

ωc

)2

γ6

(
1

γ2
+ θ2

)2 [
K2

2/3(ξ) +
θ2

(1/γ2) + θ2
K2

1/3(ξ)

]
(24)

where the parameter ξ is defined by

ξ ≡ ω

2ωc

(
1 + γ2θ2

)3/2
(25)
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4 Coherent Synchrotron Radiation

In recent years, high density electron bunches have led to interest in coherent syn-
chrotron radiation (CSR). Within a bunch, there is an instability that has been
observed in compressors, for example[?]. Internal to the bunch it is not meaningful
to distinguish near field from far field, and so simulation codes that treat this process
recognize this circumstance[?]. For beam diagnostics, the far field remains the aspect
for detection, and this we take a look at first, specifically in the case of the Fermilab
experiment.

My initial reaction to Paul Emma’s suggestion[?] that CSR may be of interest
in this case was disbelief. How can synchrotron radiation be an issue at 15 MeV?
But the coherent process varies as the square of the current, and after all this is how
ordinary radio antennas work. At the conclusion of Sec. 3.1 I noted that the critical
wavelength, λc, was about 190µm. The bunch length is only one order of magnitude
longer, a far cry from the situation in even the earliest electron synchrotrons.
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